PRODUCTION AND OPERATIONS MANAGEMENT

$$
2023 / 2024
$$

sect

Inventory Management

Chapter 3

Lisbon School of Economics
\& Managemen \& Management

- member

- ACCREDITATIONS AND PARTNERSHIPS

Agenda

- The Importance of Inventory
- Types of Inventory
- Functions of Inventory
- EOQ Model
- POQ Model
- Quantity Discount Models
- Probabilistic Models and Safety Stock

Lisbon School of Economics \& Management Universidade de Lisboo

Inventory Management

-The objective of inventory management is to strike a balance between inventory investment and customer service

Lisbon School of Economics \& Management Universidade de Lisboe

The Importance of Inventory

- Inventory is one of the most expensive assets of many companies, representing as much as 50\% of total invested capital.
- On the one hand, a firm can reduce costs by reducing inventory. On the other hand, production may stop and customers become dissatisfied when an item is out of stock.
- The objective of inventory management is to strike a balance between inventory investment and customer service. \& Management Universidade de Lisboa

Functions of Inventory

1. To decouple or separate various parts of the production process
2. To decouple the firm from fluctuations in demand and provide a stock of goods that will provide a selection for customers
3. To take advantage of quantity discounts
4. To hedge against inflation

Lisbon School of Economics \& Management \&Management

Types of Inventory

- Raw material

- Purchased but not processed
- Work-in-process (WIP)
- Undergone some change but not completed
- A function of cycle time for a product
- Maintenance/repair/operating (MRO)
- Necessary to keep machinery and processes productive
- Finished goods
- Completed product awaiting shipment

Lisbon School of Economics \& Management Universidade de Lisboo

The Material Flow Cycle

Most of the time that work is in-process (95% of the cycle time) is not productive time.

Lisbon School of Economics \& Management Universidade de Lisboe

Why Stocks?

- Economies of scale

Cyclical Stock

Safety Stock

Seasonal Stock

Strategic Stock

- Quantity discounts

Managing Inventory

1) How inventory items can be classified (called ABC analysis)?

2) How accurate inventory records can be maintained?

 \& Management Universidade de Lisboo
ABC Analysis (Pareto principle)

- Divides inventory into three classes based on annual dollar volume
- Class A - high annual dollar volume
- Class B - medium annual dollar volume
- Class C - low annual dollar volume
- Used to establish policies that focus on the few critical parts and not the many trivial ones.
- Greater control of class A products.

Lisbon School of Economics \& Management Universidade de Lisboa

Example: ABC Analysis

Item Stock Number	Percent of Number of Items Stocked	Annual Volume (units)	X	Unit Cost	Annual Dollar Volume	Percent of Annual Dollar Volume
\#10286	20%	1,000	$\$ 90.00$	$\$ 90,000$	38.8%	Class
\#11526		500	154.00	77,000	33.2%	A
$\# 12760$		1,550	17.00	26,350	11.3%	B
\#10867	30%	350	42.86	15,001	6.4%	B
\#10500		1,000	12.50	12,500	5.4%	B

Lisbon School of Economics \& Management Universidade de Lisboe

Baseado em Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc.

- accreditations and partnerships
 (i) RICS
 - асске

Example: ABC Analysis

	Percent of Number of Items Stocked	Annual Volume (units)	X	Unit Cost	=	Annual Dollar Volume	Percent of Annual Dollar Volume	Class
\#12572		600		\$ 14.17		\$ 8,502	3.7\%	C
\#14075		2,000		. 60		1,200	. 5%	C
\#01036	50\%	100		8.50		850	.4\%	C
\#01307		1,200		. 42		504	.2\%	C
\#10572		250		. 60		150	.1\%	C
		8,550				\$232,057	100.0\%	

Lisbon School of Economics \& Management Universidade de Lisboa

Baseado em Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc.

$$
\begin{aligned}
& \text { Ranking } 2020 \\
& \hline
\end{aligned}
$$

- member

\square
- accreditations and partnerships
$\underset{\text { AcCREDITE }}{\text { AACSB }} \leadsto A_{\text {ACcrebine }}^{\text {ssocumon }}$ A3ES

Example: ABC Analysis

 \& Management Universidade de Lisboa

ABC Analysis

- Other criteria than annual dollar volume may be used
- Anticipated engineering changes
- Delivery problems
- Quality problems
- High unit cost (stock or stockout)

ABC Analysis

- Policies employed may include
- More emphasis on supplier development for A items
- Tighter physical inventory control for A items
- More care in forecasting A items

Better forecasting, physical control, supplier reliability, and an ultimate reduction in inventory can all result from classification systems such as ABC analysis.

Record Accuracy

- Regardless of the inventory system, record accuracy requires good incoming and outgoing record keeping as well as good security.
- Stockrooms will have limited access, good housekeeping, and storage areas that hold fixed amounts of inventory.
- Meaningful decisions about ordering, scheduling, and shipping, are made only when the firm knows what it has on hand.

Record Accuracy

- Record accuracy is a prerequisite to inventory management, production scheduling, and, ultimately, sales. Accuracy can be maintained by either periodic or perpetual systems.
- Periodic systems require regular (periodic) checks of inventory to determine quantity on hand.
- Perpetual inventory tracks both receipts and subtractions from inventory on a continuing basis.

Lisbon School of Economics 8: Management

Independent versus Dependent Demand

- Independent demand - the demand for item is independent of the demand for any other item in inventory
- Dependent demand - the demand for item is dependent upon the demand for some other item in the inventory (e.g.: automobile parts)

Lisbon School of Economics \& Management Universidade de Lisboe

Holding, Ordering and Setup Costs

- Holding costs, H - the costs of holding or "carrying" inventory over time (one year)
- Ordering costs, S - the costs of placing an order and receiving goods
- Setup costs, S - cost to prepare a machine or process for manufacturing an order

Lisbon School of Economics \& Management Universidade de Lisboo

Periodic revision (Cycle Counting)

- Articles are counted and records are updated periodically Often used with A B C analysis
- It has several advantages:

1. Eliminates stops and interruptions
2. Eliminates annual inventory adjustment
3. Trained personnel audit inventory accuracy
4. Allows the causes of errors to be identified and corrected
5. Maintains accurate inventory records

Lisbon School of Economics \& Management Universidade de Lisboo

Example of periodic revision (Cycle Counting)

5000 items in stock: 500 A items, 1750 B items, 2750 C items.

- The policy is to count A items every month (20 working days), B items every quarter (60 days) and C items every six months (120 days)

Item	Quantity	Counting policy	Number of items counted per day
A	500	Every mounth	$500 / 20=25 /$ day
B	1750	Every quarter	$1,750 / 60=29 /$ day
C	2750	All semesters	$2,750 / 120=$ 23/day
Total			77/day

Lisbon School of Economics \& Management Universidade de Lisboa

Baseado em Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc.

- ACCREDITATIONS AND PARTNERSHIPS

Example of periodic revision (Cycle Counting)

Minimizing Costs (3 of 6)
Q = Number of units per order
Q* = Optimal number of units per order (EOQ)
D = Annual demand in units for the inventory item
$S=$ Setup or ordering cost for each order
H = Holding or carrying cost per unit per year
Annual setup cost $=$ (Number of orders placed per year)
\times (Setup or order cost per order)
$=\left(\frac{\text { Annual demand }}{\text { Number of units in each order }}\right)$ (Setup or order cost per order)
$=\left(\frac{D}{Q}\right) S$

Example of periodic revision (Cycle Counting)

Minimizing Costs (4 of 6)
Q = Number of units per order
Q* = Optimal number of units per order (EOQ)
D = Annual demand in units for the inventory item
$S=$ Setup or ordering cost for each order
Annual setup cost $=\frac{D}{Q} S$
H = Holding or carrying cost per unit per year

$$
\begin{aligned}
& \text { Annual setup cost }=(\text { Number of orders placed per year }) \\
& \\
& \quad \times(\text { Setup or order cost per order }) \\
& =\left(\frac{\text { Annual demand }}{\text { Number of units in each order })} \text { (Setup or order cost per order) }\right) \\
& = \\
& =\left(\frac{D}{Q}\right) S
\end{aligned}
$$

Example of periodic revision (Cycle Counting)

Minimizing Costs (5 of 6)
Q = Number of units per order
Q* = Optimal number of units per order (EOQ)
D = Annual demand in units for the inventory item
$S=$ Setup or ordering cost for each order
H = Holding or carrying cost per unit per year

Annual setup cost $=\frac{D}{Q} S$

Annual holding cost $=\frac{Q}{2} \mathrm{H}$

Annual holding cost $=($ Average inventory level $)$

$$
\begin{aligned}
& \times(\text { Holding cost per unit per year }) \\
= & \left(\frac{\text { Order quantity }}{2}\right)(\text { Holding cost per unit per year }) \\
= & \left(\frac{Q}{2}\right) H
\end{aligned}
$$ \& Management

Example of periodic revision (Cycle Counting)

Minimizing Costs (6 of 6)

Q = Number of units per order
Q* = Optimal number of units per order (EOQ)
D = Annual demand in units for the inventory item
$S=$ Setup or ordering cost for each order
H = Holding or carrying cost per unit per year
Optimal order quantity is found when annual setup cost equals annual holding cost Solving for Q^{*}

$$
\left(\frac{D}{Q}\right) S=\left(\frac{Q}{2}\right) H
$$

Annual setup cost $=\frac{D}{Q} S$
Annual holding cost $=\frac{Q}{2} \mathrm{H}$

$$
\begin{aligned}
& 2 D S=Q^{2} H \\
& Q^{2}=\frac{2 D S}{H} \\
& Q^{*}=\sqrt{\frac{2 D S}{H}}
\end{aligned}
$$

Holding, Ordering and Setup Costs

- Holding costs, H - the costs of holding or "carrying" inventory over time (one year)
- Ordering costs, S - the costs of placing an order and receiving goods
- Setup costs, S - cost to prepare a machine or process for manufacturing an order

Lisbon School of Economics \& Management Universidade de Lisboo

Examples: Holding Costs

- Obsolescence
- Insurances
- Staffing
- Taxes
- Pilferage
- Depreciation
- Material handling costs
- Etc.

Lisbon School of Economics \& Management Universidade de Lisboa

Examples: Holding Costs

Category	Cost (and range) as a Percent of Inventory Value
Housing costs (building rent or depreciation, operating costs, taxes, insurance)	$6 \%(3-10 \%)$
Material handling costs (equipment lease or depreciation, power, operating cost)	$3 \%(1-3.5 \%)$
Labor cost	$3 \%(3-5 \%)$
Investment costs (borrowing costs, taxes, and insurance on inventory)	$11 \%(6-24 \%)$
Pilferage, space, and obsolescence Overall carrying cost	$3 \%(2-5 \%)$

Examples: Holding Costs

Category	Cost (and range) as a Percent of Inventorv Value
Housing costs (buildina rent ar denraniat:-	
Holding costs vary consid the business, location, and interest rates. Generally greater than 15%, some high tech items have holding costs greater than 40%.	
Pilrerage, space, and obsolescence	3\% (2-5\%)
Overall carrying cost	26\%

\title{

Examples: Ordering and Setup Costs
 Ordering costs

- Documents
- Supplies
- Order processing
- Administrative support
- Etc.

Setup costs

Setup costs

- Cleaning
- Re-tooling
- Adjustments
- Etc.

Independent Demand Models How much and When to order?

- Deterministic Models
- Economic Order Quantity (EOQ)
- Production Order Quantity (POQ)
- Quantity Discount Universidade de Lisboa

EOQ - Important assumptions

1. Demand is known, constant, and independent
2. Lead time is known and constant
3. Receipt of inventory is instantaneous and complete
4. Quantity discounts are not possible
5. Only variable costs are setup and holding
6. Stockouts can be completely avoided \& Management

EOQ model (Wilson)

Lisbon School of Economics \& Management Universidade de Lisboe

Baseado em Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc.

Ranking 2020

- member

CP EFMD PRME

- ACCREDITATIONS AND PARTNERSHIPS
 (i) RICS
 $=$

EOQ model

$$
\begin{gathered}
\text { Economic Order Quantity }=Q^{*}=\sqrt{\frac{2 D S}{H}} \\
\text { Maximum inventory }=Q
\end{gathered}
$$

$$
\begin{aligned}
& \text { Order cost }=\frac{D}{Q} S \\
& \text { Holding cost }=H \frac{Q}{2}
\end{aligned}
$$

$D=$ Annual demand
$S=$ Setup/Ordering cost
$H=$ Holding cost/unit/year

Minimizing Costs Objective is to minimize total costs

 \& Management Universidade de Lisboe

Reorder Point - ROP

 \& Management Universidade de Lisboe

POQ model

\checkmark Used when inventory builds up over a period of time after an order is placed
\checkmark Used when units are produced and sold simultaneously

Restocking is not instantaneous

Lisbon School of Economics \& Management Universidade de Lisboo

POQ model

 H2

POQ model

Q = Number of units per order
$\boldsymbol{H}=$ Holding cost per unit per year
$\boldsymbol{t}=$ Length of the production run in days
$\boldsymbol{p}=$ Production rate (daily, weekly, monthly)
$\boldsymbol{d}=$ Demand rate (daily, weekly, monthly)

$$
\begin{aligned}
& \begin{array}{c}
\left.\begin{array}{c}
\text { Annual inventory } \\
\text { holding cost }
\end{array}\right)=(\text { Average inventory level }) \times\binom{\text { Holding cost }}{\text { per unit per year }} \\
\left.\begin{array}{c}
\left.\begin{array}{c}
\text { Annual inventory } \\
\text { level }
\end{array}\right)=(\text { Maximum inventory level }) / 2 \\
\binom{\text { Maximum }}{\text { inventory level }}= \\
=\left(\begin{array}{c}
\text { Total produced during } \\
\text { the production run }
\end{array}\right] \quad\left(\begin{array}{c}
\text { Total used during } \\
\text { the production run }
\end{array}\right.
\end{array}\right) \\
=p t-d t \operatorname{or} Q \times(1-d / p)
\end{array}
\end{aligned}
$$

O=

POQ model

$\mathbf{Q}=$ Number of units per order
$\boldsymbol{H}=$ Holding cost per unit per year
$\boldsymbol{t}=$ Length of the production run in days
$\boldsymbol{p}=$ Production rate (daily, weekly, monthly)
$\boldsymbol{d}=$ Demand rate (daily, weekly, monthly)
 Universidade de Lisboo

Reorder Point - ROP

- EOQ answers the question "How much" to order
- ROP defines "When" to order
- Lead Time (LT) defines the time between placement and receipt of an order

$$
\begin{aligned}
& \text { ROP }=\left(\begin{array}{c}
\text { Demand per } \\
\text { day }
\end{array}\right] \quad\binom{\text { Lead time }}{\text { (in days) }} \\
& \text { ROP }=\mathrm{d} \times \mathrm{LT}
\end{aligned}
$$

$$
d=\frac{D}{\text { Number of working days in an year }}
$$

POQ model

$$
\begin{aligned}
& \text { Production order quantity=} Q_{p}^{*}=\sqrt{\frac{\text { 2DS }}{H\left(1-\frac{d}{p}\right)}} \\
& \text { Maximum inventory }=Q\left(1-\frac{d}{p}\right) \\
& \text { Setup cost }=\frac{D}{Q} S \\
& \begin{array}{l}
D=\text { Annual demand } \\
S=\text { Setup cost } \\
H=\text { Holding cost/unit/year } \\
d=\text { Daily demand (weekly, } \\
\text { monthly) } \\
p=\text { Daily production } \\
\text { (weekly, monthly) }
\end{array} \\
& \hline
\end{aligned}
$$ Universidade de Lisboe

Quantity Discount Model

Reduced prices are often available when larger quantities are purchased

- Trade-off is between reduced product cost and increased holding cost

Total Cost = Setup cost + Holding cost + Product cost

```
TC = (D/Q)*S + (Q/2)*(I*P) + P*D
``` Universidade de Lisboe

\section*{Quantity Discount Model}

Note that holding cost is IP instead of \(H\) as seen in the regular EOQ model. Because the price of the item is a factor in annual holding cost, we do not assume that the holding cost is a constant when the price per unit changes for each quantity discount. Thus, it is common to express the holding cost as a percent (I) of unit price (\(P\)) when evaluating costs of quantity discount schedules.

\section*{\(T C=(D / Q) * S+(Q / 2) *(I * P)+P * D\)}

\section*{Where:}
\(D=\) Annual demand
Q = Quantity ordered
S = Ordering cost
\(\mathrm{P}=\) Price per unit
I = Holding cost per unit per year expressed as a percent of price \(P\)

The EOQ formula is modified for the quantity discount problem as follows:
\[
\mathrm{Q}^{*}=\sqrt{2 \mathrm{DS} / \mathrm{IP}}
\]

Lisbon School of Economics
\& Management Universidade de Lisboe

AACSB
aly

\section*{Quantity Discount Model}

\section*{Steps in analyzing a quantity discount}
1. For each discount, calculate \(Q^{\star}\)
2. If \(Q^{\star}\) for a discount doesn't qualify, choose the smallest possible order size to get the discount
3. Compute the total cost for each \(Q^{\star}\) or adjusted value from Step 2
4. Select the \(Q^{*}\) that gives the lowest total cost \& Management Universidade de Lisboo

\section*{Quantity Discount Model}

Lisbon School of Economics \& Management Universidade de Lisboe

\section*{Quantity Discount Model}
 \& Management Universidade de Lisboo
 (3) rics Prefot \(\square\)

\section*{Quantity Discount Model - Example}
- Answers the question of when and how much to order
- Allows quantity discounts:
- Lower price when large quantities are purchased
- Remaining assumptions of the EOQ model
- Trade-off between lower acquisition costs and higher ownership costs

Considering that \(\mathrm{D}=5200\) units, \(\mathrm{S}=\$ 200\), and \(\mathrm{I}=28 \%\), and the information in the following table, calculate the quantity to order.
\begin{tabular}{|c|c|c|}
\hline & Quantity Ordered & Price per unit \(\boldsymbol{P}\) \\
\hline Initial Price & 0 to 119 & \(\$ 100\) \\
\hline Discount price 1 & 120 to 1499 & \(\$ 98\) \\
\hline Discount price 2 & 1500 and over & \(\$ 96\) \\
\hline
\end{tabular}

Lisbon School of Economics
\& Managemen \& Management Universidade de Lisboo

- ACCREDITATIONS AND PARTNERSHIPS

\section*{Quantity Discount Model}
\begin{tabular}{|c|c|c|}
\hline & Quantity Ordered & Price per unit \(\boldsymbol{P}\) \\
\hline Initial Price & 0 to 119 & \(\$ 100\) \\
\hline Discount price 1 & 120 to 1499 & \(\$ 98\) \\
\hline Discount price 2 & 1500 and over & \(\$ 96\) \\
\hline
\end{tabular}

\section*{Solution Procedure:}

STEP 1: Starting with the lowest possible purchase price in a quantity discount schedule and working toward the highest price, keep calculating \(Q^{*}\) until the first feasible EOQ is found. The first feasible EOQ is a possible best order quantity, along with all price-break quantities for all lower prices.
STEP 2: Calculate the total annual cost \(T C\) for each of the possible best order quantities determined in Step 1. Select the quantity that has the lowest total cost. Note that no quantities need to be considered for any prices greater than the first feasible EOQ found in Step 1. This occurs because if an EOQ for a given price is feasible, then the EOQ for any higher price cannot lead to a lower cost (\(T C\) is guaranteed to be higher).

\section*{Quantity Discount Model - Example}

Figure 12.7

Baseado em Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc. Ranking 2020
- member

CP EFMD PRME
\(\square\) 4

\section*{Quantity Discount Model - Example}

First we calculate the \(Q^{*}\) for the lowest possible price of \(\$ 96\) :
\(Q^{*}{ }_{\$ 96}=\sqrt{(5200)(\$ 200) /(0.28)(\$ 96)}=278\) flying drones per order
\[
Q^{*}=\sqrt{\frac{2 D S}{I P}}
\]

Because 278 < 1500, this EOQ is infeasible for the \(\$ 96\) price.
So now we calculate \(Q^{*}\) for the next-higher price of \(\$ 98\) :

Non feasible - calculate \(Q^{*}\) for the next price
\(Q_{\$ 98}^{*}=\sqrt{(5200)(\$ 200) /(0.28)(\$ 98)}=275\) flying drones per order
Feasible
Because 275 is between 120 and 1499 units, this EOQ is feasible for the \(\$ 98\) price.
Thus, the possible best order quantities are 275 (the first feasible EOQ), and 1500 (the price-break quantity for the lower price of \(\$ 96\)).
We need not bother to compute \(Q^{*}\) for the initial price of \(\$ 100\) because we found a feasible EOQ for a lower price.

Lisbon School of Economics Universidade de Lisboe

\section*{Quantity Discount Model - Example}

Total Cost Computations
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
ORDER \\
QUANTITY
\end{tabular} & UNIT PRICE & \begin{tabular}{c}
ANNUAL \\
ORDERING \\
COST
\end{tabular} & \begin{tabular}{c}
ANNUAL \\
HOLDING \\
COST
\end{tabular} & \begin{tabular}{c}
ANNUAL \\
PRODUCT \\
COST
\end{tabular} & \begin{tabular}{c}
TOTAL \\
ANNUAL \\
COST
\end{tabular} \\
\hline 275 & \(\$ 98\) & \(\$ 3782\) & \(\$ 3773\) & \(\$ 509600\) & \(\$ 517155\) \\
\hline 1500 & \(\$ 96\) & \(\$ 693\) & \(\$ 20160\) & \(\$ 499200\) & \(\$ 520053\) \\
\hline
\end{tabular}

\section*{Choose the price and quantity that gives the lowest total cost.}

\section*{Order 275 drones at \(\$ 98\) per unit.} Universidade de Lisboe

\section*{Probabilistic Models and Safety Stock}
- Used when demand is not constant or uncertain
- Use safety stock to achieve the desired service level and avoid stockouts

Use prescribed service levels to set safety stock when the cost of stockouts cannot be determined
\[
R O P=\text { demand during Lead Time }+Z \sigma_{d L T}
\]

Where \(Z=\) number of standard deviations
\[
\sigma_{d L T}=\text { Standard Deviation during Lead Time }
\]
\[
\left(Z \sigma_{d L T}=\text { Safety Stock }\right)
\]

\section*{Probabilistic Demand}

Figure 12.8

Lisbon School of Economics \& Management Universidade de Lisboo

Baseado em Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc.

- member

- ACCREDITATIONS AND PARTNERSHIPS
\(\qquad\) (i) RICS \(\underset{\text { PN }}{\substack{\text { Project } \\ \text { Mantagemen } \\ \text { notrite. }}}\) \(\square\)敲

\section*{Probabilistic Demand}
 \& Management Universidade de Lisboo
- ACCREDITATIONS AND PARTNERSHIPS

\section*{Example}

Average demand during lead time \(=\mu=350\) units Standard deviation of demand during lead time \(=\sigma_{d L T}=10\) units \(5 \%\) stockout policy (therefore Service Level = 95\%):
- Using the Normal Distribution Table, for an area under the curve of \(95 \%\), the Z=1.65
- Safety stock \(=Z \sigma_{d L T}=1.65(10)=16.5=17\) units
- Reorder point = Expected demand during lead time + Safety stock
\(=350\) units +17 units of safety stock
\(=367\) units

\section*{Other Probabilistic Models}

When data on Demand during Lead Time is not available, there are other models available
1. Demand is variable and Lead Time is constant
2. Lead Time is variable and Demand is constant
3. Both Demand and Lead Time are variable
 4hatix

\section*{Other Probabilistic Models}

When data on Demand during Lead Time is not available, there are other models available
1. Demand is variable and Lead Time is constant
2. Lead Time is variable and Demand is constant
3. Both Demand and Lead Time are variable

\section*{Other Probabilistic Models}

\section*{1. Demand is variable and Lead Time is constant}
\(\mathrm{ROP}=\quad\) (average daily demand \(x\) lead t me) \(+Z \times \sigma_{d L T}\)
where, \(\sigma_{d}=\) stantard deviation of demand
\[
\sigma_{d L T}=\sqrt{L T \times \sigma_{d}^{2}}=\sqrt{L T} \times \sigma_{d}
\] Universidade de Lisboa

\section*{Other Probabilistic Models}

\section*{Example: Probabilistic Demand and Lead Time constant}

Average daily demand (normally distributed) = 15 units;
Standard deviation = 5 units;
Lead time is constant at 2 days;
90\% service level desired.

\section*{Reorder Point (ROP)?}

Lisbon School of Economics \& Management Universidade de Lisboo

\section*{Other Probabilistic Models}

\section*{Example: Probabilistic Demand and Lead Time constant}

Average daily demand (normally distributed) \(=15\) units Standard deviation = 5 units Lead time is constant at 2 days 90\% service level desired

\section*{Z for 90\% = 1.29 from ND Table}
\[
\begin{aligned}
\text { ROP } & =(15 \text { units } \times 2 \text { days })+Z \sigma_{d L T} \\
& \left.=\left[30+Z \times\left(\sqrt{L T} \times \sigma_{d}\right)\right]=30+1.29 \sqrt{2}\right)(5) \\
& =30+9.12=39.12 \approx 40 \text { units }
\end{aligned}
\]

\section*{ROP = 40 units, and Safety Stock is 10 units} Universidade de Lisboa

\title{
Other Probabilistic Models
}

\section*{2. Lead Time is variable and Demand is constant}
\[
\text { ROP }=(\text { daily demand } x \text { average lead time })+Z \times \sigma_{d L T}
\]
where, \(\sigma_{L T}=\) standard deviation of lead time in days
\[
\sigma_{d L T}=\sqrt{d^{2} \times \sigma_{L T}^{2}}=d \times \sigma_{L T}
\] Universidade de Lisboa

\section*{Other Probabilistic Models}

\section*{Example: Probabilistic Lead Time and Demand constant}

Daily demand (constant) = 10 units;
Average lead time = 6 days;
Standard deviation of lead time \(=\sigma_{L T}=3\) days;
Service level desired = 98\%.

\section*{Reorder Point (ROP)?}

Lisbon School of Economics \& Management Universidade de Lisboa

\section*{Other Probabilistic Models}

\section*{Example: Probabilistic Lead Time and Demand constant}

Daily demand (constant) \(=10\) units
Average lead time = 6 days
Standard deviation of lead time \(=\sigma_{L T}=3\) days
Service level desired = 98\%

\section*{Z for 98\% = 2.06 From ND Table}
\[
\begin{aligned}
\text { ROP } & =(10 \text { units } \times 6 \text { days })+\left(Z \times d \times \sigma_{L T}\right) \\
& =60+2.06(10)(3) \\
& =60+61.8=121.8=122 \text { units }
\end{aligned}
\]

\section*{ROP = 122 units, and Safety Stock is 62 units} Universidade de Lisboe

\section*{Other Probabilistic Models}

\section*{3. Both Demand and Lead Time are variable}
\(\mathrm{ROP}=(\) average daily demand \(x\) average lead time \()+Z \times \sigma_{d L T}\) where \(\sigma_{d}=\) standard deviation of demand per day \(\sigma_{L T}=\) standard deviation of lead time in days
\[
\sigma_{d L T}=\sqrt{\mu_{d}^{2} \times \sigma_{L T}^{2}+\mu_{L T} \times \sigma_{d}^{2}}
\]

\section*{Other Probabilistic Models}

\section*{Example: Probabilistic Lead Time and probabilistic Demand}

Average daily demand (normally distributed) = 150 units;
Standard deviation \(=\sigma_{d}=16\) units;
Average lead time 5 days (normally distributed);
Standard deviation = \(\sigma_{L T}=1\) day;
95\% service level desired. \& Management Universidade de Lisboo

\section*{Other Probabilistic Models}

\section*{Example: Probabilistic Lead Time and probabilistic Demand}

Average daily demand (normally distributed) \(=150\) units
Standard deviation \(=\sigma_{d}=16\) units
Average lead time 5 days (normally distributed)
Standard deviation \(=\sigma_{L T}=1\) day \(95 \%\) service level desired

\section*{Z for 95\% = 1.65 from ND Table}
\[
\begin{aligned}
\text { ROP } & =(150 \text { units } \times 5 \text { days })+Z \times \sigma_{d L T} \text { with }=\sigma_{d L T}=\sqrt{\mu_{d}^{2} \times \sigma_{L T}^{2}+\mu_{L T} \times \sigma_{d}^{2}} \\
& =(150 \times 5)+1,65 \sqrt{\left(5 \times 16^{2}\right)+\left(150^{2} \times 1^{2}\right)} \\
& =750+1.65(154.2)=1004.44 \rightarrow 1005 \text { units }
\end{aligned}
\] \& Management Universidade de Lisboo```

